INVESTIGATION OF LOCAL HEAT-TRANSFER
COEFFICIENTS UNDER CONDITIONS OF THE
RESONANCE OSCILLATIONS OF A GAS IN CHANNELS

B. M. Galitseiskii, A. A, Nozdrin, UDC 536,242
Yu. A. Ryzhov, and E, V, Yakush

A physical model of the process of heat transfer during resonance oscillation of a gas in chan-
nels is proposed. The results of experiments are generalized by a criterial dependence.

We have made an attempt to generalize experimental data on the heat-transfer coefficient under condi-
tions of resonance oscillations for gas flow in channels. The experiments were conducted in cylindrical chan-
nels with diameters d, =12 and 19.4 mm and lengths L = 2.045 and 2.337 m. The tests were conducted in the
following range of the basic parameters: flow temperature, Ty = 350-700°K; temperature of the channel wall,
Tw = 500-800°K; temperature factor, Tw/Tf =1.1-1.5; Reynolds number, Re; = 104-105; pressure in the
channel, Py = 3.5-20 bar; frequency of oscillations, f = 70-1000 Hz; and amplitude of pressure oscillations,
AP = 0.1-3 bar. A detailed description of the experimental equipment and the procedure of the experimental
investigations are given in [5,3]. The following physical model was taken as the basis for generalizing the
experimental data. Since in the stationary turbulent flow of a fluid the heat transfer is proportional to the
flow velocity and the thickness of the viscous layer, under conditions of an oscillating flow the relative heat-
transfer coefficient K = Nu/Nu, must depend on the relative amplitude of oscillations of the bulk velocity
A(pu)y/ (pu)y and on the relationship between the thicknesses of the stationary viscous layer 6, and the oscil~-
lating layer. The thickness of the oscillating layer 8og= vV 2v/w characterizes the gradient of the amplitude
of oscillation of the velocity close to the surface; the thickness of the stationary viscous sublayer 8, char-
acterizes the velocity gradient close to the surface in a stationary flow of the fluid.

According to semiempirical theories, the thickness of the viscous sublayer in the stationary turbulent
flow regime is given by the formula

SV Tultn 1o, 1)

The tangential stress at the wall of a cylindrical channel in the stationary flow is given by
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where the frictional drag coefficient for 10! < Re, = 10° is given by
£ = 0.3164Rep "%,

Using this relation we obtain
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According to the above physical model, the criterial equation for the relative heat-transfer coefficient
can be written in the form
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Fig. 1. Distribution of relative amplitudes of oscillations of
the bulk velocity (a) and heat-transfer coefficient () along the
length of the channel. First resonance, f =77 Hz: 1) Py=1.5
‘kg/cm?; 2) 4.25; 3) 15; second resonance, f =152 Hz: 4)

Py =1.75; 5) 4.25,

Thus, the problem of experimental investigation of the relative heat-transfer coefficient reduces to the
determination of the functional dependence {4). For computing the distribution of the relative amplitude of
oscillation of the bulk velocity along the length of the channel in a nonisothermal gas flow we made use of the
technique proposed in [5].

A typical variation of the relative amplitude of oscillation of the bulk velocity along the length of a chan~
nel with diameter dy = 19.4 mm and close to the first and second resonances is shown in Fig, 1a,

As follows from this graph, the shape of the standing wave is distorted due to the nonisothermal nature
of the flow and the friction; there are no well-defined nodes of the velocity of the standing wave and the ampli-
tude decreases along the length of the channel,
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Fig. 2. The relative heat-transfer coefficient as a func-
tion of Reynolds number: 1) first resonance; 2) second
resonance; 3) third resonance. '
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Fig. 3. Generalized dependence of the maximum
heat-transfer coefficient on the ratio of the oscil-
lating and stationary layers. First segment: 1)
first resonance; 2) second resonance; second seg-
ment: 3) first resonance; 4) second resonance; 5)
third resonance.

The distribution of the local heat transfer along the length of the channel near the first and the second
resonance harmonics in a channel with diameter d; = 19.4 mm is shown in Fig. 1b in relative coordinates
K—1 ~F ( X ) '
Kmax —1 L
The form of the distribution of heat transfer along the length of the channel corresponds to the nature
of the distribution of the relative amplitude of oscillation of the bulk velocity. The relative heat-transfer co-
efficient along the length of the standing wave changes in proportion to the relative amplitude of oscillation of
the bulk velocity according to a law which is close to linear:
K—1 A (pu
k - (pu)o . ®)
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Thus, the experimental dependence of the distribution of heat transfer along the length of the standing wave
shown in this figure can be regarded as universal. Therefore, for generalizing the experimental data it is
sufficient to determine the criterial dependence for the maximum of the heat transfer (heat transfer at the
antinode of the velocity of the standing wave). An experimental investigation of this dependence is the most
difficult stage of the investigation, since, as a rule, all three criteria of similarity Re,, Reyw, and Afpu)y/ (pu)g
are interrelated in the experimental equipment and a sufficiently large number of tests are required in order
to separate out the effect of each individually.

A similar (close to linear) law of variation of the relative heat transfer as a function of the relative am~-
plitude of oscillation of the bulk velocity is observed at the antinode of the velocity of the standing wave.

The variation of the relative heat-transfer coefficient as a function of Reynolds number is shown in Fig.
2 for three frequencies (first, second, and third resonances), The heat-transfer coefficient increases with
Reynolds number and the heat-transfer decreases with the increase of the oscillatory Reynolds number Rey,,
other conditions remaining unchanged. This nature of variation of heat transfer is explained by the variation
of the quantity 60g/0, as a function of Rejand Rey,, The analysis of the results of experiments on heat transfer
at the velocity antinode of the standing wave is shown in Fig. 3 for channels with diameters dy =12 and 19.4
mm in coordinates :
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As follows from this graph, the results of the experiments can be satisfactorily generalized with respect
to the parameter 6o5/6y. The heat transfer increases with parameter 6og/6; and attains a maximum for Sog =
36y after this, for Sog > 36, some decrease of heat transfer is observed.

The results obtained above can be interpreted in the following way. The maximum effect of ogcillations
on heat transfer is observed for such ratios of the frequency of oscillations and Reynolds number for which the
thickness of the oscillating layer 6og is comparable with the thickness of the stationary transitional (uffer)
layer, which is approximately equal to 36,. Since the thickness of the oscillating layer characterizes the
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intensity of the secondary vortices close to the surface and the maximum generation of turbulent fluctuations

is observed at the boundary of the transitional layer, for 6og = 36, the maximum energy transport by turbulent
fluctuations to the surface occurs through the secondary vortices, which leads to an increase of heat transfer.

In the range 6os/8, > 3 2 decrease of the heat transfer must occur with the increase of dog/8, i.e., the in-
crease of Reynolds number and decrease of the frequency of oscillation must lead to a decrease of the effect

of oscillating flow on heat transfer, which agrees with the available experimental data. However, this assump-
tion requires additional experimental investigation in the range of low-frequency oscillations.

According to the investigations carried out here, the results of the tests on the maximum heat transfer
for 60g/8; €3 can be generalized by the criterial equation
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NOTATION

dy, channel diameter; L, channel length; p, density; u, velocity; P, pressure; T, temperature; f,
frequency; w, angular frequency; Ty, tangential stress on channel wall; 6og, thickness of the oscillating
layer; &, thickness of the stationary viscous sublayer; v, kinematic viscosity coefficient; Nu, Nusselt num-
ber; K = Nu/Nu,, relative heat-transfer coefficient; Re, =udy/v, Reynolds number; Rey = wd%/v, oscillating
Reynolds number. Indices: 0, averaged parameters; A, fluctuation parameters.
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INVESTIGATION OF HEAT TRANSFER IN THE ENTRANCE
REGION OF A FLAT PLATE PARALLEL TO THE FLOW
WITH A LEADING EDGE IN THE FORM OF A

ONE-SIDED WEDGE

V. M. Legkii, Yu. D. Koval', : UDC 536.242
A. A, Shapoval, and A. I. Berezyuk

Relations are given for calculating the local heat transfer in the dynamic initial section of a lon~
gitudinally washed generator of a one-sided wedge for the case of constant wall temperature and
turbulent boundary layer.

Leading edges with the profile of a sharp one-sided wedge, shown schematically in Fig. 1, are frequently
encountered in the natural components of power machinery and in model experiments related to the study of
heat transfer and flow over longitudinally washed surfaces [1,2,13). When the angle §8 is quite small and the
velocity field in the incident stream is uniform, it is usually assumed that mixed flow is generated in thebound-
ary layer at the edge of a wedge oriented in the direction of the velocity vector W ¢he edge A in Fig. 1). How-
ever, it is known that leading edges with an angle near 90° cause flow separation 4,10,11],
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